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Abstract: Staphylococcus aureus and Staphylococcus epidermidis are related species which can cause
predominantly acute and subacute infections, respectively. Differences in human adaptive immune
responses to these two species are not well understood. Dendritic cells (DCs) have an important
role in the control and regulation of anti-staphylococcal T cell responses. Therefore, we aimed to
compare the ability of S. aureus and S. epidermidis to influence the essential steps in human DC
activation and subsequent antigen-specific CD4+ T cell proliferation, and to investigate the underlying
mechanisms. Using multiple strains of both species, we observed that S. aureus was internalized
more effectively than S. epidermidis by DCs but that both species were equally potent in activating
these host cells, as evidenced by similar induction of DC maturation marker expression and antigen
loading onto MHC-II molecules. The DCs stimulated by S. aureus strains not harboring superantigen
(SAg) genes or by any of the S. epidermidis strains, induced low, likely physiological levels of T cell
proliferation. Only DCs stimulated with S. aureus strains harboring SAg genes induced high levels of
T cell proliferation. Taken together, S. aureus and S. epidermidis do not differently affect DC activation
and ensuing antigen-specific T cell proliferation, unless a strain has the capacity to produce SAgs.

Keywords: Staphylococcus aureus; Staphylococcus epidermidis; dendritic cells; T cells; superantigen;
human immune response

1. Introduction

Staphylococcus aureus and Staphylococcus epidermidis are two major opportunistic pathogens
colonizing cutaneous and mucosal surfaces in the human body. Around 30% and 100% of the
human population is colonized with S. aureus or S. epidermidis, respectively [1,2]. In general,
these microorganisms have a commensal relationship with the human host. However, when these
staphylococci penetrate the epithelial protective barrier in case of trauma or implantation of medical
devices, they can become pathogenic. S. epidermidis is primarily associated with subacute infections
related to any kind of implanted medical device, resulting in a myriad of infections such as
catheter-related infections, prosthetic valve endocarditis and implant-associated osteomyelitis [3].
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In contrast, the more virulent S. aureus is associated with more acute and pyogenic infections ranging
from superficial infections to life-threatening invasive diseases such as pneumonia, acute endocarditis,
medical device-associated infection and sepsis [4].

The successful control and elimination of staphylococci depends on the hosts innate and adaptive
immunity. Among cells of the innate immune system dendritic cells (DCs) have a key function
in activating adaptive immunity, mostly due to their strategic location at epithelial surfaces and
their capacity to acquire, process and present antigens via major histocompatibility complex (MHC)
molecules to T cells. Recent studies highlighted the important role of DCs in activating and regulating
anti-staphylococcal T cell responses [5–8]. However, a detailed understanding of the interaction of
DCs with S. aureus and S. epidermidis leading to T cell activation is lacking, and studies have focused
particularly on mouse models rather than on human primary cell models.

In S. aureus bloodstream infection in mice, DCs contribute to the control of infection by producing
interleukin (IL) 12 [7], a cytokine involved in the development of T helper 1 (Th1) cell responses.
Depletion of DCs causes substantial reduction of clearance of bacteria from the lungs and kidneys [7].
S. aureus has developed different strategies to evade or modulate DC and T cell responses. They can
exacerbate T cell proliferation and pro-inflammatory DC responses in an antigen non-specific manner
by producing superantigens (SAgs) which cross-link T cell receptors with MHC class II (MHC-II)
molecules on DCs [5,8]. This non-specific stimulation may lead to pathogenic immune responses, as the
resulting high concentrations of pro-inflammatory cytokines produced may cause a status of shock
possibly followed by death [9]. S. aureus can also evade phagocytic killing and persist intracellularly
within multiple professional and non-professional phagocytic cells, including mouse DCs [7,10].

In contrast to S. aureus, S. epidermidis lacks the aggressive immune evasion strategies which affect
DC and T cell responses. In mouse skin, resident DCs orchestrate T cell responses to commensal
S. epidermidis, and these responses help to maintain the adaptive immune barrier against invasive
microbes [6]. Moreover, S. epidermidis or their cell-free supernatants induce DCs to become semi-mature
and may cause anti-inflammatory DC responses leading to regulatory T cell induction [5,11].
Such low-grade inflammatory DC and T cell responses may be beneficial in case S. epidermidis
residing as commensals on the skin, but in case the bacteria cause infection, a more pro-inflammatory
response would be required. S. epidermidis express poly-γ-glutamic acid (PGA), an extracellular polymer
which protects these bacteria from antimicrobial peptides and phagocytic uptake by neutrophils [12,13].
It is not known if PGA also efficiently protects S. epidermidis from DC phagocytosis and limits ensuing
antigen presentation to T cells.

It has remained largely unexplored whether viable S. aureus and S. epidermidis differently affect
human DC- and ensuing DC-induced T cell activation, and what the possible mechanisms are
underlying such differences. Therefore, to better understand the pathogenesis of S. aureus and
S. epidermidis, we aimed to compare the ability of these bacteria to influence the essential steps in DC
activation and subsequent antigen-specific CD4+ T cell proliferation.

2. Materials and Methods

2.1. Staphylococcal Strains

S. aureus strains ATCC 49230, LUH15101 (methicillin-doxycycline resistant) [14], RN4220
(ATCC 35556), JAR060131 [15], 42D (ATCC 27712), and S. epidermidis strains O-47 [16], RP62a
(methicillin-resistant, ATCC 35984), AMC5 [17] and NCTC100892, were used. The strains selected
are clinical isolates (except for strain RN4220), which possess factors important to establish an
infection. These strains are often used for in vitro and in vivo studies on staphylococcal pathogenesis,
biomaterial-associated infection and treatment with antimicrobial peptides [14,18–21]. All strains were
positive for icaADBC gene cluster and all S. aureus strains were positive for either the cap5 or cap8
gene (data not shown). Prior to each experiment the bacteria were cultured in tryptic soy broth (TSB,
BD Difco, Sparks, MD, USA), to the logarithmic growth phase at 37 ◦C while shaking. The viable
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bacteria were harvested by centrifugation and resuspended to the desired concentrations in Iscove’s
Modified Dulbecco’s Medium (IMDM, Lonza, Basel, Switzerland) containing 10% heat-inactivated
(HI) fetal calf serum (FCS, Invitrogen, Carlsbad, CA, USA). Cell-free culture supernatants of S.
aureus strains were obtained by centrifugation followed by passing the supernatants through 0.2 µm
filters. Absence of viable bacteria in the supernatant was confirmed by culture on blood agar
plates. For internalization experiments GFP-expressing S. aureus ATCC 49230 [18] and S. epidermidis
O-47 [20,22] or carboxyfluorescein succinimidyl ester (CFSE)-labeled staphylococci were used. In brief,
GFP-staphylococci were obtained by transformation with plasmid WVW189 containing the gfpuvr gene,
as previously described [18,20]. The fluorescent intensity of GFP-expressing S. aureus ATCC 49230 and
S. epidermidis O-47 was the same (data not shown). CFSE-staphylococci were labeled by incubation in
0.5 µM CFSE (Invitrogen) for 30 minutes at room temperature followed by two washing steps.

2.2. Generation and Stimulation of DCs

Human peripheral blood was collected after obtaining written informed consent in accordance with
the approval of the Medical Ethical Committee of the Amsterdam UMC, Location AMC, Amsterdam.
Monocyte-derived DCs were generated and cultured from peripheral blood of anonymous healthy
human blood donors as previously described [23]. In brief, monocytes were isolated by density
centrifugation on Lymphoprep (Nycomed, Zürich, Switserland) and Percoll (GE Healthcare, Chicago,
IL, USA) and monocytes (4 × 105 cells/mL) were cultured for 6 days in 24-well culture plates (Costar,
Cambridge, MA, USA) in IMDM (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
5% FCS, 86 µg/mL gentamicin (Duchefa, Haarlem, The Netherlands), 500 U/mL recombinant human
GM-CSF (Schering-Plough, Kenilworth, NJ, USA) and 10 IU/mL recombinant human IL-4 (Miltenyi
Biotec, Bergisch Gladbach, Germany) to obtain DCs. The yield of monocytes using the two-step density
centrifugation cell isolation method on Lymphoprep and Percoll is 75%–90%. On day 6, immature DCs
(iDCs, CD11c+CD14− Supplementary Figure S1) were resuspended and stimulated for the indicated
times with the bacteria in cell culture medium (IMDM supplemented with 10% HI FCS and 86 µg/mL
gentamicin, unless indicated otherwise). The multiplicity of infection (MOI) used in these co-culture
experiments was 100, 50 or 20 colony forming units (CFU) per DC. No major differences in DC viability
nor in the proportion of apoptotic cells were observed after stimulation, as examined by flow cytometry
using propidium iodide (Sigma, St Louis, MO, USA) and Annexin V (BD Biosciences, Franklin Lakes,
NJ, USA) staining, respectively (Supplementary Figure S2).

2.3. DC Maturation Analysis

DCs (1 × 105 cells) were stimulated with staphylococci at an MOI of 100 in 1 mL cell culture
medium for 48 h. To prevent bacterial overgrowth, 10 µg/mL moxifloxacin (Avelox, Bayer Schering
Pharma, West Haven, CT, USA) was added. As measure of DC activation the expression of cell surface
molecules was measured by flow cytometry (Canto II, BD Biosciences) after incubation with fluorescent
antibodies HLA-DR-PerCP, CD83-APC and CD86-PE (all purchased from BD Biosciences). For each
fluorescent antibody, cells stained with a single fluorophore were used to correct for false positive
fluorescence (data not shown). Lipopolysaccharide (LPS) (100 ng/mL from Escherichia coli 0111:B4;
Sigma-Aldrich, St Louis, MO, USA) was used as positive control for the induction of fully mature DCs.

2.4. Internalization and Processing Assays

iDCs (2 × 104 cells) were co-cultured with GFP-expressing or CFSE-labelled staphylococci (37 ◦C,
20 CFU/ cell) in 200 µL cell culture medium for 2, 4, 8 or 24 h. Uptake was stopped by washing three
times with ice-cold PBS and cells were analyzed by flow cytometry. Antibodies against lipoteichoic
acid (LTA, QED Bioscience Inc., San Diego, CA, USA) followed by secondary fluorescent GαM-PE
(Jackson ImmunoResearch, West Grove, PA, USA) were used to detect extracellular bacteria. DCs with
a single GFP stain were used to allow proper gating of GFP-positive and α-LTA-PE-negative cells (data
not shown). For confocal laser scanning microscopy (CLSM), iDCs and GFP-expressing bacteria were
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incubated on poly-d-lysine-coated (Sigma Aldrich) coverslips for 1 h at 37 ◦C. After incubation, cells
were washed, fixed with 3.7% paraformaldehyde (Sigma-Aldrich) and stained with primary anti-CD11c
(clone B-ly6, BD Pharmingen, San Diego, CA, USA) followed by GαM-Alexa-568 (Molecular Probes,
Leiden, The Netherlands), primary anti-LTA followed by GαM-Alexa-700 (Molecular Probes, Leiden,
The Netherlands) and Hoechst (Immunochemistry Technologies, Bloomington, MN, USA) to visualize
the DC membrane, extracellular bacteria and DNA, respectively. Cells were analyzed with a confocal
microscope (Leica SP8 X, Leica LAS-X software, Wetzlar, Germany). To investigate antigen processing,
iDCs (1 × 105 cells) were co-cultured with staphylococci at an MOI of 50 or LPS (100 ng/mL) as
positive control for 17 h in cell culture medium. DCs were stained with anti-HLA-DR-APC (clone L243,
BD Bioscience) and anti-CerCLIP.1-FITC (BD Bioscience), to detect human CLIP bound to HLA-DR,
and subsequently analyzed by flow cytometry. To calculate the relative expression of CLIP on DCs,
the geometric mean fluorescent intensity (gMFI) of CerCLIP was divided by the gMFI of HLA-DR.

2.5. Intracellular Bacterial Survival

iDCs (2 × 104 cells) were allowed to internalize staphylococci (MOI of 20) for 1 h at 37 ◦C in cell
culture medium without antibiotics in a 96-well plate. After 1 h, DCs were washed for 10 min with
culture medium containing 86 µg/mL gentamicin to kill the remaining extracellular bacteria. DCs
infected with S. epidermidis strain RP62a were washed for 10 min with culture medium containing
10 µg/mL moxifloxacin since this strain is resistant against gentamicin. DCs were either harvested
to obtain the number of internalized bacteria after 1 h or further incubated at 37 ◦C for 3, 7, 23 and
47 h in cell culture medium containing 10 µg/mL gentamicin or 1 µg/mL moxifloxacin for DCs with
S. epidermidis RP62a. The gentamicin dose (10 µg/mL) used during the different incubation periods
is not likely to affect the intracellular bacteria numbers [24]. At each sampling time point harvested
DCs were washed with cell culture medium without antibiotics and lysed with 0.1% Triton X-100 in
phosphate buffered saline (PBS). The DC lysate was serially diluted and plated on blood agar plates.
After 24 h of incubation at 37 ◦C, the numbers of viable bacteria were quantified.

2.6. T Cell Proliferation

Human peripheral blood lymphocytes (PBLs) were isolated as previously described [25].
Autologous or allogeneic naive CD4+ T cells were isolated from PBLs by negative selection using
the CD4+ T cell isolation MACS kit (Miltenyi Biotec, Bergisch Gladbach, Germany) followed by
CD45RO-PE (Dako, Agilent, Santa Clara, CA, USA) and magnetic anti-PE beads (Miltenyi-Biotech,
Bergisch Gladbach, Germany), as described previously [25]. The purity of the isolated naive CD4+

(CD45RO-CD45RA+) T cells was >97%, as assessed by flow cytometry. DCs were stimulated for
48 h with viable bacteria as described for the DC maturation analysis, washed, and co-cultured with
CFSE-labeled (0.5 µM, Invitrogen) autologous naive CD4+ T cells (CD45RO-CD45RA+) at a 1:1 ratio
(4 × 104: 4 × 104 cells) for 5 days in cell culture medium. To assess the induction of antigen-independent
T cell proliferation by soluble S. aureus or S. epidermidis factors, DCs were stimulated for 48 h with
supernatants of S. aureus or S. epidermidis cultures (diluted 1:5) and co-cultured with CFSE-labeled
allogeneic naive CD4+ T cells, instead of autologous T cells. Sterile TSB bacterial culture medium
was used as control. T cell proliferation was determined by flow cytometry (Canto II, BD Biosciences)
and quantified using FlowJo software (version 7.6.5, Tree star, Ashland, OR, USA). The precursor
frequency indicates the percentage of cells of the original T cell population that underwent at least one
cell division.

2.7. Staphylococcal Cap Locus PCR and Superantigen Multiplex PCR

DNA was extracted from the bacteria and PCRs and multiplex PCRs were performed to assess
the presence of capB, capC, capA and capD genes and 19 different staphylococcal enterotoxins (broadly
classified as superantigens) genes (for primers see Table 1), respectively. Multiplex PCRs were
performed as previously described [26,27]. In brief, extracted DNA was used in five sets of multiplex
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PCRs targeting the following sets of genes: (i) sea, seh, sec, and tst; (ii) sed, and sek; (iii) see, seb, sem,
sel, and seo; (iv) sen, seg, seq, and sej; (v) sei, ser, seu, and sep. The PCR products were resolved by
electrophoresis in 1.5% agarose gels (1× Tris–borate–EDTA buffer), stained with ethidium bromide,
and visualized under ultraviolet light.

Table 1. Primers.

Target Genes Forward Primer (5’–3’) Reverse Primer (5’–3’)

capB GCACGAATGCTCTATTGG CTTCATCTACACCAACTGC

capC GCAGGGTTAGTCGTTCCAG CGTCAGTATCATGGCAGC

capA GCATTCGTATCACCTATTTAG CACCAGCATTCGCTAACGC

capD GCGGTTGATGCGGCAATAG CAGATGTTGTTCATTACTAGGC

sea GAAAAAAGTCTGAATTGCAGGGAACA CAAATAAATCGTAATTAACCGAAGGTTC

seh CAATCACATCATATGCGAAAGCAG CATCTACCCAAACATTAGCACC

sec CTTGTATGTATGGAGGAATAACAAAACATG CATATCATACCAAAAAGTATTGCCGT

tst TTCACTATTTGTAAAAGTGTCAGACCCACT TACTAATGAATTTTTTTATCGTAAGCCCTT

sed GAATTAAGTAGTACCGCGCTAAATAATATG GCTGTATTTTTCCTCCGAGAGT

sek ATGCCAGCGCTCAAGGC AGATTCATTTGAAAATTGTAGTTGATTAGCT

see CAAAGAAATGCTTTAAGCAATCTTAGGC CACCTTACCGCCAAAGCTG

seb ATTCTATTAAGGACACTAAGTTAGGGA ATCCCGTTTCATAAGGCGAGT

sem CTATTAATCTTTGGGTTAATGGAGAAC TTCAGTTTCGACAGTTTTGTTGTCAT

sel GCGATGTAGGTCCAGGAAAC CATATATAGTACGAGAGTTAGAACCATA

seo AGTTTGTGTAAGAAGTCAAGTGTAGA ATCTTTAAATTCAGCAGATATTCCATCTAAC

sen CGTGGCAATTAGACGAGTC GATTGATYTTGATGATTATKAG

seg TCTCCACCTGTTGAAGG AAGTGATTGTCTATTGTCG

seq ACCTGAAAAGCTTCAAGGA CGCCAACGTAATTCCAC

sej TCAGAACTGTTGTTCCGCTAG GAATTTTACCAYCAAAGGTAC

sei CTYGAATTTTCAACMGGTAC AGGCAGTCCATCTCCTG

ser AGCGGTAATAGCAGAAAATG TCTTGTACCGTAACCGTTTT

seu AATGGCTCTAAAATTGATGG ATTTGATTTCCATCATGCTC

sep GAATTGCAGGGAACTGCT GGCGGTGTCTTTTGAAC

2.8. Statistical Analysis

Data were analyzed for statistical significance using linear mixed models on rank transformed
data followed by the post hoc Wilcoxon signed ranked test for pairwise comparisons. p-values of ≤0.05
were considered as statistically significant. Statistical analysis was performed using IBM SPSS Statistics
software version 24.

3. Results

3.1. S. aureus and S. epidermidis Induce Similar Expression of DC Maturation Markers

Upon the encounter of microbes, DCs will undergo a specific activation program. As the levels of
DC activation determine T cell proliferation, we analyzed to what extent S. aureus and S. epidermidis
induce DC activation. DC activation was determined by measuring the expression of DC maturation
markers HLA-DR, CD86 and CD83. S. aureus and S. epidermidis were equally potent in upregulating
the expression of these DC maturation markers of which the upregulation of CD86 expression was the
most pronounced (Figure 1A). The ability of the bacteria to induce DC activation was not strain specific,
as shown by similar expression of DC maturation marker CD86 upon stimulation with different
S. aureus and S. epidermidis strains (Figure 1B). The expression of HLA-DR and CD83 was also similarly
upregulated by the different S. aureus and S. epidermidis strains (Supplementary Figure S3). These
results demonstrate that S. aureus and S. epidermidis strains induce similar DC maturation.
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Figure 1. Dendritic cell (DC) maturation marker expression upon S. aureus or S. epidermidis stimulation.
(A) Surface expression of HLA-DR, CD86 and CD83 after 48 h on unstimulated DCs (iDCs) or on DCs
stimulated with S. aureus ATCC49230 or S. epidermidis RP62a, as measured by flow cytometry. Fold
difference of geometric mean fluorescence intensity of stimulated relative to unstimulated DCs (iDCs).
Data of 10 independent experiments. Each dot represents one donor tested in an individual experiment,
the horizontal line represents median value, *** p < 0.001. (B) Expression of CD86 (10log fluorescence
intensity) on iDCs (filled) or on DCs stimulated with different strains of S. aureus and S. epidermidis
(solid). Data from one experiment out of two performed, with similar results.

3.2. S. epidermidis Are Internalized by DCs to a Lower Extent than S. aureus

Subsequently, we investigated the capacity of DCs to internalize S. aureus and S. epidermidis,
by incubating DCs with GFP-expressing staphylococci and quantifying internalization by flow
cytometry. Interestingly, we found that DCs were more potent in internalizing S. aureus than
S. epidermidis at all time points tested (Figure 2A). The percentage of DCs that internalized S. aureus on
average was five times higher than the percentage of DCs that internalized S. epidermidis (Figure 2A).
Moreover, also the mean numbers of S. aureus taken up per cell were higher, as indicated by a higher
GFP mean fluorescence intensity of DCs incubated with these bacteria (Supplementary Figure S4).
These findings were confirmed by confocal laser scanning microscopy (CLSM), where clearly higher
numbers of GFP-expressing S. aureus bacteria were detected inside DCs (Figure 2B). All S. aureus
strains tested were internalized to a higher level than the S. epidermidis strains (Figure 2C). Even after a
time period of 24 h S. epidermidis bacteria were not internalized to the same level as S. aureus bacteria,
showing that it did not simply require more time to internalize S. epidermidis bacteria (Supplementary
Figure S5). Collectively these data indicate that DCs are more efficient in internalizing S. aureus bacteria
than in internalizing S. epidermidis bacteria.
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Figure 2. Internalization of S. aureus and S. epidermidis by DCs. (A,B) DC uptake of GFP-S. aureus
ATCC49230 or GFP-S. epidermidis O-47. (A) Percentages of DCs which internalized fluorescent
staphylococci were quantified by flow cytometry. Data are presented as mean + SD of five independent
experiments, * p < 0.05, ** p < 0.01. (B) Representative confocal laser scanning microscopy (CLSM)
pictures of internalization of GFP-S. aureus ATCC49230 (upper panels) and GFP-S. epidermidis O-47
(lower pannels) by DCs. DCs were stained with CD11c (red) to visualize cell membranes, hoechst (blue)
to visualize DNA and anti-LTA (yellow) was used to discriminate between internalized (not stained)
and extracellularly (stained) attached bacteria. The white scale bar indicates 10 µm. (C) DC uptake of
carboxyfluorescein succinimidyl ester (CFSE)-labeled strains of S. aureus or S. epidermidis quantified by
flow cytometry. Data are presented as mean + SD of duplicate values of one experiment.

It has been reported that S. epidermidis PGA is involved in resistance to neutrophil phagocytosis [13].
The genes of the cap locus (capBCAD) code for the production of the S. epidermidis PGA capsule [12].
We therefore investigated the presence of capBCAD genes in the tested S. aureus and S. epidermidis
strains to investigate whether this was associated with the decreased capacity of DCs to internalize
S. epidermidis. Indeed, the S. epidermidis strains were all positive for the capBCAD genes, whereas
S. aureus strains were all negative (Supplementary Table S1). This suggests that PGA may play a role in
resistance of S. epidermidis to DC phagocytosis.

Since S. aureus is described to persist within phagocytic cells, we hypothesized that the high
level of internalization of S. aureus by DCs may result in intracellular survival and multiplication.
We therefore infected DCs with S. aureus and S. epidermidis and lysed the DCs at specific time points
post phagocytosis to quantify the numbers of viable internalized bacteria. The intracellular bacterial
load in DCs decreased over time for both bacteria, though the reduction in number of intracellular
S. epidermidis was less than of S. aureus. No complete killing of S. aureus and S. epidermidis bacteria was
observed after 48 h, with the exception of S. aureus strain 42D (Figure 3).



Microorganisms 2020, 8, 19 8 of 17

Figure 3. Numbers of viable intracellular S. aureus and S. epidermidis after phagocytosis in DCs over
time. DCs were allowed to internalize different strains of S. aureus or S. epidermidis. After 1 h of
internalization DCs were washed with medium containing 86 µg/mL gentamicin to kill extracellular
bacteria and either harvested or further cultured in medium with 10 µg/mL gentamicin (to prevent
extracellular growth) for different periods. The intracellular numbers of S. aureus (A) or S. epidermidis
(B) bacteria were quantified by lysing DCs and quantitative bacterial culture of the DC lysates. Data
are presented as mean + SD of duplicate values of one representative experiment out of three.

3.3. S. aureus and S. epidermidis Antigens Are both Efficiently Loaded on MHC-II Molecules by DCs

After internalization of bacteria, the ability of DCs to process and load antigens on MHC-II
molecules is essential for antigen-specific CD4+ T cell activation. A pivotal step in antigen loading on
MHC-II molecules is the replacement of class II-associated invariant chain peptide (CLIP) by antigenic
peptides in the MHC-II peptide binding groove. High cell surface expression of CLIP is an indicator
for low effectiveness of antigen presentation [28]. Conversely, loading of antigenic peptides in the
MHC-II binding groove reduces the surface expression of CLIP. To investigate whether the different
capacity of DCs to internalize S. aureus and S. epidermidis may lead to differences in antigen loading on
MHC-II molecules, we analyzed the efficacy of CLIP exchange for antigenic peptides by measuring
total HLA-DR expression and relative CLIP expression (relative amount of HLA-DR occupied by
CLIP) by flow cytometry. In line with previous reports [29,30], stimulation with LPS, which is not
processed as antigen on MHC-II molecules, leads to high relative CLIP expression on DCs whereas
unstimulated DCs have low relative CLIP expression (Figure 4). Incubation with the different S. aureus
and S. epidermidis strains induced lower relative CLIP expression compared to incubation with the LPS
control. Moreover, no differences were found in relative CLIP expression on DCs incubated with the
different S. aureus and S. epidermidis strains (Figure 4). This indicated that despite difference in uptake
of the bacteria, DCs did not differently process and present antigenic peptides upon incubation with
S. aureus or S. epidermidis strains.

Figure 4. DC antigen loading onto MHC-II molecules. The relative class II-associated invariant chain
peptide (CLIP) amount per HLA-DR molecule (CLIP:HLA-DR ratio) on unstimulated DCs (iDC) or DCs
incubated with LPS or with different strains of S. aureus or S. epidermidis for 17 h. Data are presented as
mean + SEM of five independent experiments with DCs of individual donors.
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3.4. S. aureus and S. epidermidis Strains Vary in Their Capacity to Induce T Cell Proliferation

Next, we analyzed the ability of DCs having phagocytosed S. aureus or S. epidermidis to activate
antigen-specific CD4+ T cells. DCs were incubated with S. aureus or S. epidermidis for 48 h, washed
and then co-cultured with CFSE-labeled autologous naive CD4+ T cells. After 5 days of co-culture the
precursor frequency was assessed as a marker of T cell proliferation. Clearly, S. epidermidis-stimulated
DCs were less potent than S. aureus-stimulated DCs in inducing proliferation of naive T cells (Figure 5A).
Surprisingly, individual S. aureus strains differed in their capacity to induce DC-mediated T cell
proliferation while all S. epidermidis strains consistently induced low levels of T cell proliferation
(Figure 5B,C). These data indicated that the T cell stimulatory capacity of S. aureus-stimulated DCs was
strain specific, whereas for S. epidermidis–stimulated DCs this capacity was low for all strains tested.

Figure 5. Induction of T cell proliferation by DCs stimulated with S. aureus and S. epidermidis strains.
(A,B,C) Proliferation of CFSE labeled naïve CD4+ T cells upon co-culture with unstimulated DCs
(iDCs), or S. aureus or S. epidermidis stimulated DCs. (A) The percentage of T cells that divided
(precursor frequency) upon stimulation with S. aureus ATCC49230 or S. epidermidis RP62a. Data of 10
independent experiments. Each dot represents one donor tested in an individual experiment, horizontal
line represents median value, * p < 0.05, *** p < 0.001. (B) The precursor frequency of T cells upon
stimulation by DCs incubated with different strains of S. aureus and S. epidermidis. Data shown are
median + range of three independent experiments with cells of different donors. (C) The CFSE profiles
of proliferated T cells stimulated by DCs incubated with different strains of S. aureus and S. epidermidis
or unstimulated (iDCs) (10log fluorescence intensity). Data from one representative experiment out of
the three experiments shown in (B). The percentage of proliferated cells is indicated.
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3.5. In Absence of SAgs, S. aureus and S. epidermidis Induce Similar Levels of T Cell Proliferation

All S. aureus strains were efficiently phagocytosed and no differences in antigen loading in MHC-II
was detected among strains, but still a major difference in T cell stimulatory capacity was observed
when DCs were incubated with different strains. The high proliferative responses of T cells to certain
strains of S. aureus can probably be explained by the production of staphylococcal superantigens (SAgs)
by these strains. The difference in potency in inducing T cell proliferation may be related to differences
in expression and repertoire of SAgs. In order to investigate a possible role of SAgs in the proliferative
responses of autologous T cells we assessed the presence of SAg genes in staphylococcal strains by
PCR. All S. aureus strains that supported high T cell proliferation were positive for three or more SAg
genes. In contrast, all S. aureus strains which lacked the capacity to induce high T cell proliferation
were negative for any of the SAg genes analyzed (Figure 6A). As expected, the S. epidermidis strains
were negative for the SAg genes as well. In agreement with the putative role of SAgs in the observed T
cell proliferation, exposure of allogeneic T cells to DCs stimulated with bacterial cell-free supernatants
of cultures of the SAg-positive strains induced proliferation, whereas supernatants of SAg-negative S.
aureus strains or S. epidermidis strains did not (Figure 6B). Moreover, addition of cell-free supernatant of
an SAg-positive S. aureus strain increased the levels of T cell proliferation in response to an SAg-negative
strain to the same level as induced by the SAg-positive strain itself (data not shown). This confirmed
that secreted factors of the S. aureus strains positive for SAg genes were responsible for the high T cell
proliferation in an antigen non-specific manner, suggesting that these factors were the respective SAgs.
Of note, there seemed to be a positive correlation between the number of SAg genes present in S. aureus
strains and the level of T cell proliferation induced (Figure 6B).

Figure 6. S. aureus strains producing SAgs induce high DC-mediated T cell proliferation. (A) presence
of SAg genes in the different staphylococcal strains. None of the tested strains was positive for seb, sed,
see, seh, sej, sep and ser gene. (B) The CFSE profiles of proliferated allogeneic T cells upon co-culture
with DCs and cell-free supernatants of S. aureus or S. epidermidis strains (10log fluorescence intensity).
Data from one representative experiment out of three experiments with cells of different donors.
The percentage of proliferated cells is indicated.
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4. Discussion

In this study we provide a detailed understanding of the interaction of S. aureus and S. epidermidis
with human dendritic cell leading to T cell proliferation. We show that DCs more effectively internalized
S. aureus than S. epidermidis, but that both bacterial species were equally potent in activating DCs as
evidenced by similar induction of DC maturation marker expression and antigen loading on MHC-II
molecules. Only certain S. aureus strains induced high levels of T cell proliferation, owing to their
capacity of secreting superantigens (SAgs). S. aureus strains lacking SAg genes induced similar T cell
proliferation as S. epidermidis strains. Taken together, these observations indicate that the difference in
T cell proliferation in response to S. aureus and S. epidermidis is not due to differences in DC activation,
bacterial uptake or antigen processing and presentation but likely to the capacity of S. aureus strains to
produce SAgs.

It is well known that S. aureus produce a wide array of virulence factors that interfere with normal
immune function, among which are SAgs inducing high, often pathogenic levels of antigen-independent
T cell proliferation and pro-inflammatory cytokine production related to sepsis [9]. However,
the presence of SAgs not always is directly correlated with the severity of infection or outcome
since invasive clinical S. aureus isolates are not always positive for SAgs [31,32]. For example, the SAg
gene profiles of invasive and nasal S. aureus isolates were shown to be very similar [26]. Three of
the five S. aureus strains used in this study caused excessive DC-mediated T cell proliferation. These
strains carried three or more of 19 analyzed SAg genes. All S. epidermidis strains were negative for
all SAg genes tested, which is in line with the general consensus that human S. epidermidis isolates
are negative for SAg genes [33]. Correspondingly, the most potent inducer of T cell proliferation,
S. aureus LUH15101 was positive for eight different SAg genes. The S. aureus strains harboring multiple
SAg genes activated larger numbers of T cells than strains producing only a single or a few SAg,
corresponding to results with other sets of S aureus strains [34,35]. This presumably is the case because
the multiple SAgs activate multiple T cell populations expressing distinct Vβ–T cell receptor regions.
We did not quantify the level of the specific SAgs present in the supernatant of the SAg-positive
S. aureus strains, but only minute amounts (pg/ml) of SAgs are needed for human DCs to activate
T cells [36,37]. Of note, as in many other studies [38–41], we base our conclusions on the presence
of SAg genes. Assuming that these genes are indeed expressed and that (activating levels of) SAgs
are produced. We tested our staphylococcal strains only for the presence of 19 of the 26 known SAg
genes [42–45], because of the lack of positive control strains for the remaining seven genes. Therefore,
we cannot exclude the presence of other SAg genes in our strains.

SAg-negative S. aureus and the S. epidermidis strains were equally potent in inducing DC-mediated
T cell proliferation, inducing approximately 5% of the T cells to proliferate. This is in line with published
proliferation frequencies of human CD4+ naive and memory T cells reactive to such strains or their
antigens, which varies between 0.2%–10% [5,46,47]. The variation in this frequency is depending on the
human donor’s T cell receptor repertoire, prior exposures to staphylococci and on the staphylococcal
antigens used in the experiments. Since the level of naive CD4+ T cell proliferation as observed in our
study is within the normal range, we assume that this is a physiologically functional level of response
to S. aureus and S. epidermidis. Of note, our proliferation data do not necessarily indicate that S. aureus
and S. epidermidis induce the same Th cell polarization [5,6]. This polarization will depend on the T cell
polarizing cytokines produced by DCs upon S. aureus or S. epidermidis binding to potentially different
(combinations of) pathogen recognition receptors.

DCs stimulated with S. aureus or S. epidermidis equally upregulated the expression of DC maturation
markers. In contrast, a study by Laborel-Préneron et al. reported that the cell-free supernatant of
S. aureus induced high levels of DC maturation marker expression but cell-free supernatant of
S. epidermidis did not [5]. Apparently, DCs respond weakly to the components present in S. epidermidis
supernatant while whole viable S. epidermidis bacterial cells induced strong DC maturation marker
expression. In addition, the high DC maturation marker expression induced by S. aureus supernatant
is indicated to be largely due to SAgs [5,48–53].
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DCs internalized significantly higher numbers of S. aureus than of S. epidermidis, for all strains tested.
Although from the confocal images it appeared that adherence of S. epidermidis to DCs was impaired,
we did observe adherence of S. epidermidis by flow cytometry analysis (data not shown). The limited
capacity of DCs to internalize S. epidermidis was likely due to the presence of the S. epidermidis PGA
capsule. It is thought that the PGA capsule has a biological role in both the non-infectious and infectious
lifestyle of S. epidermidis. PGA protects S. epidermidis against environmental factors such as high salt
concentrations and antimicrobial peptides on the skin, but also helps evading the immune response
by preventing phagocytosis [12]. Deletion of the cap genes required for synthesis of the S. epidermidis
PGA capsule, causes an increase of S. epidermidis internalization by neutrophils [12]. Other capsular
polysaccharides, such as poly-N-acetyl glucosamine (PNAG) also known as polysaccharide intercellular
adhesin (PIA) or capsular polysaccharides (CP)5 and CP8, may also protect staphylococci against
phagocytosis [54–58]. Since all strains are positive for the for the (icaADBC, cap5, cap8) genes necessary
for PNAG/PIA, CP5 and CP8 synthesis, it is unlikely that these capsules are the distinguishing factor
in the different level of S. aureus and S. epidermidis internalization by DCs. In contrast to S. epidermidis,
which evade the immune response by limiting phagocytosis, S. aureus evade extracellular immune
responses by actively inducing their internalization through binding of fibronectin and its subsequent
recognition by α5β1 integrins on both professional and non-professional phagocytic cells [59–61].
This suggests that in addition to S. epidermidis expression of anti-phagocytic PGA, expression of
pro-phagocytic factors by S. aureus may explain the difference in level of internalization of S. aureus
and S. epidermidis by DCs.

There is substantial evidence that S. aureus can survive and even multiply in professional
phagocytes, including human and murine neutrophils and macrophages [62–65], however survival
in the host is dependent on the MOI and the bacterial growth phase [66–68]. S. epidermidis bacteria
are killed by phagocytic cells, but PIA, a factor involved in S. epidermidis biofilm formation, may
decrease the intracellular killing [54,69–71]. We observed a decrease of numbers of viable intracellular
S. aureus and S. epidermidis in DCs over time, indicating that DCs killed the internalized bacteria of both
species. The reduction of numbers of viable intracellular S. aureus was stronger than of S. epidermidis.
In accordance with previous findings, the rate of intracellular killing seemed proportional to the
number of internalized bacteria [72]. Although the capacity of DCs to kill the internalized staphylococci
was limited, we did not observe any intracellular net growth of the bacteria. In line with our findings,
previous studies demonstrated that human DCs have a low efficiency of killing internalized pathogens,
especially when compared to human monocytes and macrophages [73–75]. This result is in agreement
with the main function of DCs, which is to sense and process pathogens and present their antigens
to T cells, rather than to eliminate all pathogens. Moreover, we previously reported that DCs which
internalized staphylococci undergo the main steps in the process of antigen presentation on MHC-II
molecules and actually induce staphylococcal-specific T cell activation [76]. Here we showed that
despite differences in bacterial uptake of S. aureus and S. epidermidis, DCs which had internalized these
bacteria were equally efficient in antigen loading onto MHC-II molecules, as indirectly measured by
their efficacy of CLIP replacement by antigens. This indicates that S. aureus and S. epidermidis bacteria
are not only internalized and killed by DCs but also processed via the endosome-lysosome pathway
leading to staphylococcal-antigen presentation to T cells.

Our findings indicate that despite differences in S. aureus and S. epidermidis internalization by DCs,
the DCs were equally effective in expressing activation markers and antigen presentation through
their MHC-II molecules. Differences in the level of the ensuing DC-induced T cell proliferation were
attributed to the capacity of S. aureus bacteria to produce SAgs. S. epidermidis strains and S. aureus strains
not producing SAgs induced similar levels of T cell proliferation. Thus, S. aureus and S. epidermidis
do not differently affect DC activation and ensuing antigen-specific T cell proliferation in the absence
of SAgs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/1/19/s1,
Figure S1: Example of flow cytometry gating and CD11c-positivity of monocyte-derived DCs at day 6 of
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differentiation., Figure S2: DC cytotoxicity after 48 h of infection with S. aureus or S. epidermidis. Figure S3 DC
maturation marker expression upon S. aureus or S. epidermidis stimulation., Figure S4: DCs internalize more
S. aureus than S. epidermidis cells., Figure S5: DC uptake of CFSE-labeled strains of S. aureus or S. epidermidis after
24 h of incubation., Table S1: Presence of cap genes in staphylococci.

Author Contributions: E.C.d.J., W.J.B.v.W. and S.A.J.Z. designed the study, P.P.B. conducted the research, analyzed
the data and wrote the original draft. E.C.d.J., W.J.B.v.W. and S.A.J.Z. reviewed and edited the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank S.V. Snijders (Erasmus Medical Center, Rotterdam) for performing the superantigen
multiplex PCRs, L. de Boer (Academic Medical Center, Amsterdam) for performing the PGA PCR, M. Tanck
(Academic Medical Center, Amsterdam) for helping with the statistical analysis and Y. Souwer (Academic Medical
Center, Amsterdam) for his advice on the experimental methods.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [CrossRef] [PubMed]
2. Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L.

The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [CrossRef]
3. Rogers, K.L.; Fey, P.D.; Rupp, M.E. Coagulase-negative staphylococcal infections. Infect. Dis. Clin. N. Am.

2009, 23, 73–98. [CrossRef] [PubMed]
4. Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections:

Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28,
603–661. [CrossRef]

5. Laborel-Preneron, E.; Bianchi, P.; Boralevi, F.; Lehours, P.; Fraysse, F.; Morice-Picard, F.; Sugai, M.; Sato’o, Y.;
Badiou, C.; Lina, G.; et al. Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes
Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation. PLoS ONE 2015, 10,
e0141067. [CrossRef]

6. Naik, S.; Bouladoux, N.; Linehan, J.L.; Han, S.J.; Harrison, O.J.; Wilhelm, C.; Conlan, S.; Himmelfarb, S.;
Byrd, A.L.; Deming, C.; et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune
signature. Nature 2015, 520, 104–108. [CrossRef]

7. Schindler, D.; Gutierrez, M.G.; Beineke, A.; Rauter, Y.; Rohde, M.; Foster, S.; Goldmann, O.; Medina, E.
Dendritic cells are central coordinators of the host immune response to Staphylococcus aureus bloodstream
infection. Am. J. Pathol. 2012, 181, 1327–1337. [CrossRef]

8. Voorhees, T.; Chang, J.; Yao, Y.; Kaplan, M.H.; Chang, C.H.; Travers, J.B. Dendritic cells produce inflammatory
cytokines in response to bacterial products from Staphylococcus aureus-infected atopic dermatitis lesions.
Cell. Immunol. 2011, 267, 17–22. [CrossRef]

9. Broker, B.M.; Mrochen, D.; Peton, V. The T Cell Response to Staphylococcus aureus. Pathogens 2016, 5.
[CrossRef]

10. O’Keeffe, K.M.; Wilk, M.M.; Leech, J.M.; Murphy, A.G.; Laabei, M.; Monk, I.R.; Massey, R.C.; Lindsay, J.A.;
Foster, T.J.; Geoghegan, J.A.; et al. Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus
aureus Bloodstream Infection. Infect. Immun. 2015, 83, 3445–3457. [CrossRef]

11. Scharschmidt, T.C.; Vasquez, K.S.; Truong, H.A.; Gearty, S.V.; Pauli, M.L.; Nosbaum, A.; Gratz, I.K.; Otto, M.;
Moon, J.J.; Liese, J.; et al. A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal
Microbes. Immunity 2015, 43, 1011–1021. [CrossRef] [PubMed]

12. Kocianova, S.; Vuong, C.; Yao, Y.; Voyich, J.M.; Fischer, E.R.; DeLeo, F.R.; Otto, M. Key role of
poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin.
Investig. 2005, 115, 688–694. [CrossRef] [PubMed]

13. Otto, M. Staphylococcus epidermidis—The ‘accidental‘ pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567.
[CrossRef] [PubMed]

14. Metsemakers, W.J.; Emanuel, N.; Cohen, O.; Reichart, M.; Potapova, I.; Schmid, T.; Segal, D.; Riool, M.;
Kwakman, P.H.; de Boer, L.; et al. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the
prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus
aureus. J. Control. Release 2015, 209, 47–56. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrmicro2537
http://www.ncbi.nlm.nih.gov/pubmed/21407241
http://dx.doi.org/10.1016/S1473-3099(05)70295-4
http://dx.doi.org/10.1016/j.idc.2008.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19135917
http://dx.doi.org/10.1128/CMR.00134-14
http://dx.doi.org/10.1371/journal.pone.0141067
http://dx.doi.org/10.1038/nature14052
http://dx.doi.org/10.1016/j.ajpath.2012.06.039
http://dx.doi.org/10.1016/j.cellimm.2010.10.010
http://dx.doi.org/10.3390/pathogens5010031
http://dx.doi.org/10.1128/IAI.00358-15
http://dx.doi.org/10.1016/j.immuni.2015.10.016
http://www.ncbi.nlm.nih.gov/pubmed/26588783
http://dx.doi.org/10.1172/JCI200523523
http://www.ncbi.nlm.nih.gov/pubmed/15696197
http://dx.doi.org/10.1038/nrmicro2182
http://www.ncbi.nlm.nih.gov/pubmed/19609257
http://dx.doi.org/10.1016/j.jconrel.2015.04.022
http://www.ncbi.nlm.nih.gov/pubmed/25910578


Microorganisms 2020, 8, 19 14 of 17

15. Campoccia, D.; Montanaro, L.; Moriarty, T.F.; Richards, R.G.; Ravaioli, S.; Arciola, C.R. The selection of
appropriate bacterial strains in preclinical evaluation of infection-resistant biomaterials. Int. J. Artif. Organs
2008, 31, 841–847. [CrossRef]

16. Heilmann, C.; Gerke, C.; Perdreau-Remington, F.; Gotz, F. Characterization of Tn917 insertion mutants of
Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 1996, 64, 277–282.

17. Broekhuizen, C.A.; de Boer, L.; Schipper, K.; Jones, C.D.; Quadir, S.; Feldman, R.G.; Dankert, J.;
Vandenbroucke-Grauls, C.M.; Weening, J.J.; Zaat, S.A. Peri-implant tissue is an important niche for
Staphylococcus epidermidis in experimental biomaterial-associated infection in mice. Infect. Immun.
2007, 75, 1129–1136. [CrossRef]

18. Riool, M.; Dirks, A.J.; Jaspers, V.; de Boer, L.; Loontjens, T.J.; van der Loos, C.M.; Florquin, S.; Apachitei, I.;
Rijk, L.N.; Keul, H.A.; et al. A chlorhexidine-releasing epoxy-based coating on titanium implants prevents
Staphylococcus aureus experimental biomaterial-associated infection. Eur. Cell Mater. 2017, 33, 143–157.
[CrossRef]

19. Li, D.; Gromov, K.; Soballe, K.; Puzas, J.E.; O’Keefe, R.J.; Awad, H.; Drissi, H.; Schwarz, E.M. Quantitative
mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and
humoral immunity. J. Orthop. Res. 2008, 26, 96–105. [CrossRef]

20. Riool, M.; de Boer, L.; Jaspers, V.; van der Loos, C.M.; van Wamel, W.J.B.; Wu, G.; Kwakman, P.H.S.; Zaat, S.A.J.
Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune
cells. Acta Biomater. 2014, 10, 5202–5212. [CrossRef]

21. De Breij, A.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; de Boer, L.; Koning, R.I.; Ravensbergen, E.; Franken, M.;
van der Heijde, T.; Boekema, B.K.; et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria
and biofilms. Sci. Transl. Med. 2018, 10. [CrossRef]

22. Veneman, W.J.; Stockhammer, O.W.; de Boer, L.; Zaat, S.A.; Meijer, A.H.; Spaink, H.P. A zebrafish high
throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics
2013, 14, 255. [CrossRef]

23. Körholz, D. Cytokines and Colony Stimulating Factors—Methods and Protocols; Körholz, D., Kiess, W., Eds.;
Humana Press: Totowa, NJ, USA, 2003.

24. Lacoma, A.; Cano, V.; Moranta, D.; Regueiro, V.; Dominguez-Villanueva, D.; Laabei, M.; Gonzalez-Nicolau, M.;
Ausina, V.; Prat, C.; Bengoechea, J.A. Investigating intracellular persistence of Staphylococcus aureus within
a murine alveolar macrophage cell line. Virulence 2017, 8, 1761–1765. [CrossRef]

25. Van der Aar, A.M.; Sibiryak, D.S.; Bakdash, G.; van Capel, T.M.; van der Kleij, H.P.; Opstelten, D.J.;
Teunissen, M.B.; Kapsenberg, M.L.; de Jong, E.C. Vitamin D3 targets epidermal and dermal dendritic cells for
induction of distinct regulatory T cells. J. Allergy Clin. Immunol. 2011, 127, 1532–1540. [CrossRef] [PubMed]

26. Holtfreter, S.; Grumann, D.; Schmudde, M.; Nguyen, H.T.; Eichler, P.; Strommenger, B.; Kopron, K.; Kolata, J.;
Giedrys-Kalemba, S.; Steinmetz, I.; et al. Clonal distribution of superantigen genes in clinical Staphylococcus
aureus isolates. J. Clin. Microbiol. 2007, 45, 2669–2680. [CrossRef] [PubMed]

27. Van Trijp, M.J.; Melles, D.C.; Snijders, S.V.; Wertheim, H.F.; Verbrugh, H.A.; van Belkum, A.; van
Wamel, W.J. Genotypes, superantigen gene profiles, and presence of exfoliative toxin genes in clinical
methicillin-susceptible Staphylococcus aureus isolates. Diagn Microbiol. Infect. Dis. 2010, 66, 222–224.
[CrossRef] [PubMed]

28. Glazier, K.S.; Hake, S.B.; Tobin, H.M.; Chadburn, A.; Schattner, E.J.; Denzin, L.K. Germinal center B cells
regulate their capability to present antigen by modulation of HLA-DO. J. Exp. Med. 2002, 195, 1063–1069.
[CrossRef]

29. Rohn, T.A.; Boes, M.; Wolters, D.; Spindeldreher, S.; Muller, B.; Langen, H.; Ploegh, H.; Vogt, A.B.;
Kropshofer, H. Upregulation of the CLIP self peptide on mature dendritic cells antagonizes T helper type 1
polarization. Nat. Immunol. 2004, 5, 909–918. [CrossRef]

30. Kleijmeer, M.; Ramm, G.; Schuurhuis, D.; Griffith, J.; Rescigno, M.; Ricciardi-Castagnoli, P.; Rudensky, A.Y.;
Ossendorp, F.; Melief, C.J.; Stoorvogel, W.; et al. Reorganization of multivesicular bodies regulates MHC
class II antigen presentation by dendritic cells. J. Cell Biol. 2001, 155, 53–63. [CrossRef]

31. Chung, J.W.; Karau, M.J.; Greenwood-Quaintance, K.E.; Ballard, A.D.; Tilahun, A.; Khaleghi, S.R.; David, C.S.;
Patel, R.; Rajagopalan, G. Superantigen profiling of Staphylococcus aureus infective endocarditis isolates.
Diagn Microbiol. Infect. Dis. 2014, 79, 119–124. [CrossRef]

http://dx.doi.org/10.1177/039139880803100913
http://dx.doi.org/10.1128/IAI.01262-06
http://dx.doi.org/10.22203/eCM.v033a11
http://dx.doi.org/10.1002/jor.20452
http://dx.doi.org/10.1016/j.actbio.2014.08.012
http://dx.doi.org/10.1126/scitranslmed.aan4044
http://dx.doi.org/10.1186/1471-2164-14-255
http://dx.doi.org/10.1080/21505594.2017.1361089
http://dx.doi.org/10.1016/j.jaci.2011.01.068
http://www.ncbi.nlm.nih.gov/pubmed/21497886
http://dx.doi.org/10.1128/JCM.00204-07
http://www.ncbi.nlm.nih.gov/pubmed/17537946
http://dx.doi.org/10.1016/j.diagmicrobio.2009.08.021
http://www.ncbi.nlm.nih.gov/pubmed/19828275
http://dx.doi.org/10.1084/jem.20012059
http://dx.doi.org/10.1038/ni1108
http://dx.doi.org/10.1083/jcb.200103071
http://dx.doi.org/10.1016/j.diagmicrobio.2014.03.009


Microorganisms 2020, 8, 19 15 of 17

32. Azuma, K.; Koike, K.; Kobayashi, T.; Mochizuki, T.; Mashiko, K.; Yamamoto, Y. Detection of circulating
superantigens in an intensive care unit population. Int. J. Infect. Dis. 2004, 8, 292–298. [CrossRef] [PubMed]

33. Stach, C.S.; Vu, B.G.; Schlievert, P.M. Determining the Presence of Superantigens in Coagulase Negative
Staphylococci from Humans. PLoS ONE 2015, 10, e0143341. [CrossRef] [PubMed]

34. Choi, Y.W.; Kotzin, B.; Herron, L.; Callahan, J.; Marrack, P.; Kappler, J. Interaction of Staphylococcus aureus
toxin “superantigens” with human T cells. Proc. Natl. Acad. Sci. USA 1989, 86, 8941–8945. [CrossRef]
[PubMed]

35. Seo, K.S.; Park, J.Y.; Terman, D.S.; Bohach, G.A. A quantitative real time PCR method to analyze T cell
receptor Vbeta subgroup expansion by staphylococcal superantigens. J. Transl. Med. 2010, 8, 2. [CrossRef]
[PubMed]

36. Bhardwaj, N.; Friedman, S.M.; Cole, B.C.; Nisanian, A.J. Dendritic cells are potent antigen-presenting cells
for microbial superantigens. J. Exp. Med. 1992, 175, 267–273. [CrossRef] [PubMed]

37. Bhardwaj, N.; Young, J.W.; Nisanian, A.J.; Baggers, J.; Steinman, R.M. Small amounts of superantigen, when
presented on dendritic cells, are sufficient to initiate T cell responses. J. Exp. Med. 1993, 178, 633–642.
[CrossRef]

38. Grumann, D.; Scharf, S.S.; Holtfreter, S.; Kohler, C.; Steil, L.; Engelmann, S.; Hecker, M.; Volker, U.;
Broker, B.M. Immune cell activation by enterotoxin gene cluster (egc)-encoded and non-egc superantigens
from Staphylococcus aureus. J. Immunol. 2008, 181, 5054–5061. [CrossRef]

39. Holtfreter, S.; Bauer, K.; Thomas, D.; Feig, C.; Lorenz, V.; Roschack, K.; Friebe, E.; Selleng, K.; Lovenich, S.;
Greve, T.; et al. egc-Encoded superantigens from Staphylococcus aureus are neutralized by human sera
much less efficiently than are classical staphylococcal enterotoxins or toxic shock syndrome toxin. Infect.
Immun. 2004, 72, 4061–4071. [CrossRef]

40. Johansson, M.A.; Bjorkander, S.; Mata Forsberg, M.; Qazi, K.R.; Salvany Celades, M.; Bittmann, J.; Eberl, M.;
Sverremark-Ekstrom, E. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of
Conventional and Unconventional T cells and NK Cells. Front. Immunol. 2016, 7, 273. [CrossRef]

41. Park, K.H.; Greenwood-Quaintance, K.E.; Cunningham, S.A.; Rajagopalan, G.; Chia, N.; Jeraldo, P.R.;
Mandrekar, J.; Patel, R. Lack of correlation of virulence gene profiles of Staphylococcus aureus bacteremia
isolates with mortality. Microb. Pathog. 2019, 133, 103543. [CrossRef]

42. Ono, H.K.; Omoe, K.; Imanishi, K.; Iwakabe, Y.; Hu, D.L.; Kato, H.; Saito, N.; Nakane, A.; Uchiyama, T.;
Shinagawa, K. Identification and characterization of two novel staphylococcal enterotoxins, types S and T.
Infect. Immun. 2008, 76, 4999–5005. [CrossRef] [PubMed]

43. Ono, H.K.; Sato’o, Y.; Narita, K.; Naito, I.; Hirose, S.; Hisatsune, J.; Asano, K.; Hu, D.L.; Omoe, K.; Sugai, M.;
et al. Identification and Characterization of a Novel Staphylococcal Emetic Toxin. Appl. Environ. Microbiol.
2015, 81, 7034–7040. [CrossRef] [PubMed]

44. Spaulding, A.R.; Salgado-Pabon, W.; Kohler, P.L.; Horswill, A.R.; Leung, D.Y.; Schlievert, P.M. Staphylococcal
and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [CrossRef] [PubMed]

45. Spoor, L.E.; Richardson, E.; Richards, A.C.; Wilson, G.J.; Mendonca, C.; Gupta, R.K.; McAdam, P.R.;
Nutbeam-Tuffs, S.; Black, N.S.; O’Gara, J.P.; et al. Recombination-mediated remodelling of host-pathogen
interactions during Staphylococcus aureus niche adaptation. Microb. Genom. 2015, 1, e000036. [CrossRef]
[PubMed]

46. Brown, A.F.; Murphy, A.G.; Lalor, S.J.; Leech, J.M.; O’Keeffe, K.M.; Mac Aogain, M.; O’Halloran, D.P.;
Lacey, K.A.; Tavakol, M.; Hearnden, C.H.; et al. Memory Th1 Cells Are Protective in Invasive Staphylococcus
aureus Infection. PLoS Pathog. 2015, 11, e1005226. [CrossRef]

47. Kolata, J.B.; Kuhbandner, I.; Link, C.; Normann, N.; Vu, C.H.; Steil, L.; Weidenmaier, C.; Broker, B.M. The Fall
of a Dogma? Unexpected High T-Cell Memory Response to Staphylococcus aureus in Humans. J. Infect. Dis.
2015, 212, 830–838. [CrossRef]

48. Coutant, K.D.; de Fraissinette, A.B.; Cordier, A.; Ulrich, P. Modulation of the activity of human
monocyte-derived dendritic cells by chemical haptens, a metal allergen, and a staphylococcal superantigen.
Toxicol. Sci. 1999, 52, 189–198. [CrossRef]

49. Kato, M.; Nakamura, Y.; Suda, T.; Ozawa, Y.; Inui, N.; Seo, N.; Nagata, T.; Koide, Y.; Kalinski, P.; Nakamura, H.;
et al. Enhanced anti-tumor immunity by superantigen-pulsed dendritic cells. Cancer Immunol. Immunother.
2011, 60, 1029–1038. [CrossRef]

http://dx.doi.org/10.1016/j.ijid.2003.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15325598
http://dx.doi.org/10.1371/journal.pone.0143341
http://www.ncbi.nlm.nih.gov/pubmed/26599862
http://dx.doi.org/10.1073/pnas.86.22.8941
http://www.ncbi.nlm.nih.gov/pubmed/2479030
http://dx.doi.org/10.1186/1479-5876-8-2
http://www.ncbi.nlm.nih.gov/pubmed/20070903
http://dx.doi.org/10.1084/jem.175.1.267
http://www.ncbi.nlm.nih.gov/pubmed/1730919
http://dx.doi.org/10.1084/jem.178.2.633
http://dx.doi.org/10.4049/jimmunol.181.7.5054
http://dx.doi.org/10.1128/IAI.72.7.4061-4071.2004
http://dx.doi.org/10.3389/fimmu.2016.00273
http://dx.doi.org/10.1016/j.micpath.2019.103543
http://dx.doi.org/10.1128/IAI.00045-08
http://www.ncbi.nlm.nih.gov/pubmed/18710864
http://dx.doi.org/10.1128/AEM.01873-15
http://www.ncbi.nlm.nih.gov/pubmed/26231643
http://dx.doi.org/10.1128/CMR.00104-12
http://www.ncbi.nlm.nih.gov/pubmed/23824366
http://dx.doi.org/10.1099/mgen.0.000036
http://www.ncbi.nlm.nih.gov/pubmed/28348819
http://dx.doi.org/10.1371/journal.ppat.1005226
http://dx.doi.org/10.1093/infdis/jiv128
http://dx.doi.org/10.1093/toxsci/52.2.189
http://dx.doi.org/10.1007/s00262-011-1015-5


Microorganisms 2020, 8, 19 16 of 17

50. Melkus, M.W.; Estes, J.D.; Padgett-Thomas, A.; Gatlin, J.; Denton, P.W.; Othieno, F.A.; Wege, A.K.; Haase, A.T.;
Garcia, J.V. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat.
Med. 2006, 12, 1316–1322. [CrossRef]

51. Muraille, E.; De Trez, C.; Pajak, B.; Brait, M.; Urbain, J.; Leo, O. T cell-dependent maturation of dendritic cells
in response to bacterial superantigens. J. Immunol. 2002, 168, 4352–4360. [CrossRef]

52. Muralimohan, G.; Vella, A.T. A role for IFNgamma in differential superantigen stimulation of conventional
versus plasmacytoid DCs. Cell. Immunol. 2006, 242, 9–22. [CrossRef] [PubMed]

53. Rossi, R.J.; Muralimohan, G.; Maxwell, J.R.; Vella, A.T. Staphylococcal enterotoxins condition cells of the
innate immune system for Toll-like receptor 4 stimulation. Int. Immunol. 2004, 16, 1751–1760. [CrossRef]
[PubMed]

54. Vuong, C.; Voyich, J.M.; Fischer, E.R.; Braughton, K.R.; Whitney, A.R.; DeLeo, F.R.; Otto, M. Polysaccharide
intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human
innate immune system. Cell. Microbiol. 2004, 6, 269–275. [CrossRef] [PubMed]

55. Kristian, S.A.; Birkenstock, T.A.; Sauder, U.; Mack, D.; Gotz, F.; Landmann, R. Biofilm formation induces
C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from
neutrophil-dependent killing. J. Infect. Dis. 2008, 197, 1028–1035. [CrossRef] [PubMed]

56. Kropec, A.; Maira-Litran, T.; Jefferson, K.K.; Grout, M.; Cramton, S.E.; Gotz, F.; Goldmann, D.A.; Pier, G.B.
Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models
of systemic infection. Infect. Immun. 2005, 73, 6868–6876. [CrossRef]

57. Kuipers, A.; Stapels, D.A.; Weerwind, L.T.; Ko, Y.P.; Ruyken, M.; Lee, J.C.; van Kessel, K.P.; Rooijakkers, S.H.
The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to
protect against phagocytosis. Microbiology 2016, 162, 1185–1194. [CrossRef]

58. O’Riordan, K.; Lee, J.C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 2004, 17,
218–234. [CrossRef]

59. Almeida, J.F.; Mariat, D.; Azevedo, V.; Miyoshi, A.; de Moreno de LeBlanc, A.; Del Carmen, S.; Martin, R.;
Langella, P.; LeBlanc, J.G.; Chatel, J.M. Correlation between fibronectin binding protein A expression level at
the surface of recombinant lactococcus lactis and plasmid transfer in vitro and in vivo. BMC Microbiol. 2014,
14, 248. [CrossRef]

60. Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Hook, M. Adhesion, invasion and evasion: The many functions of
the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49–62. [CrossRef]

61. Khalil, H.; Williams, R.J.; Stenbeck, G.; Henderson, B.; Meghji, S.; Nair, S.P. Invasion of bone cells by
Staphylococcus epidermidis. Microbes Infect. 2007, 9, 460–465. [CrossRef]

62. Fraunholz, M.; Sinha, B. Intracellular Staphylococcus aureus: Live-in and let die. Front. Cell. Infect. Microbiol.
2012, 2, 43. [CrossRef] [PubMed]

63. Gresham, H.D.; Lowrance, J.H.; Caver, T.E.; Wilson, B.S.; Cheung, A.L.; Lindberg, F.P. Survival of
Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 2000, 164, 3713–3722.
[CrossRef] [PubMed]

64. Kubica, M.; Guzik, K.; Koziel, J.; Zarebski, M.; Richter, W.; Gajkowska, B.; Golda, A.; Maciag-Gudowska, A.;
Brix, K.; Shaw, L.; et al. A potential new pathway for Staphylococcus aureus dissemination: The silent
survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS ONE 2008, 3, e1409.
[CrossRef] [PubMed]

65. Voyich, J.M.; Braughton, K.R.; Sturdevant, D.E.; Whitney, A.R.; Said-Salim, B.; Porcella, S.F.; Long, R.D.;
Dorward, D.W.; Gardner, D.J.; Kreiswirth, B.N.; et al. Insights into mechanisms used by Staphylococcus
aureus to avoid destruction by human neutrophils. J. Immunol. 2005, 175, 3907–3919. [CrossRef] [PubMed]

66. Mohammed, K.A.; Nasreen, N.; Antony, V.B. Bacterial induction of early response genes and activation of
proapoptotic factors in pleural mesothelial cells. Lung 2007, 185, 355–365. [CrossRef]

67. Schwartz, J.; Leidal, K.G.; Femling, J.K.; Weiss, J.P.; Nauseef, W.M. Neutrophil bleaching of GFP-expressing
staphylococci: Probing the intraphagosomal fate of individual bacteria. J. Immunol. 2009, 183, 2632–2641.
[CrossRef]

68. Pang, Y.Y.; Schwartz, J.; Thoendel, M.; Ackermann, L.W.; Horswill, A.R.; Nauseef, W.M. agr-Dependent
interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J. Innate Immun.
2010, 2, 546–559. [CrossRef]

http://dx.doi.org/10.1038/nm1431
http://dx.doi.org/10.4049/jimmunol.168.9.4352
http://dx.doi.org/10.1016/j.cellimm.2006.08.007
http://www.ncbi.nlm.nih.gov/pubmed/17045255
http://dx.doi.org/10.1093/intimm/dxh176
http://www.ncbi.nlm.nih.gov/pubmed/15504761
http://dx.doi.org/10.1046/j.1462-5822.2004.00367.x
http://www.ncbi.nlm.nih.gov/pubmed/14764110
http://dx.doi.org/10.1086/528992
http://www.ncbi.nlm.nih.gov/pubmed/18419540
http://dx.doi.org/10.1128/IAI.73.10.6868-6876.2005
http://dx.doi.org/10.1099/mic.0.000293
http://dx.doi.org/10.1128/CMR.17.1.218-234.2004
http://dx.doi.org/10.1186/s12866-014-0248-9
http://dx.doi.org/10.1038/nrmicro3161
http://dx.doi.org/10.1016/j.micinf.2007.01.002
http://dx.doi.org/10.3389/fcimb.2012.00043
http://www.ncbi.nlm.nih.gov/pubmed/22919634
http://dx.doi.org/10.4049/jimmunol.164.7.3713
http://www.ncbi.nlm.nih.gov/pubmed/10725730
http://dx.doi.org/10.1371/journal.pone.0001409
http://www.ncbi.nlm.nih.gov/pubmed/18183290
http://dx.doi.org/10.4049/jimmunol.175.6.3907
http://www.ncbi.nlm.nih.gov/pubmed/16148137
http://dx.doi.org/10.1007/s00408-007-9046-6
http://dx.doi.org/10.4049/jimmunol.0804110
http://dx.doi.org/10.1159/000319855


Microorganisms 2020, 8, 19 17 of 17

69. Cheung, G.Y.; Rigby, K.; Wang, R.; Queck, S.Y.; Braughton, K.R.; Whitney, A.R.; Teintze, M.; DeLeo, F.R.;
Otto, M. Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog. 2010, 6,
e1001133. [CrossRef]

70. Spiliopoulou, A.I.; Kolonitsiou, F.; Krevvata, M.I.; Leontsinidis, M.; Wilkinson, T.S.; Mack, D.; Anastassiou, E.D.
Bacterial adhesion, intracellular survival and cytokine induction upon stimulation of mononuclear cells with
planktonic or biofilm phase Staphylococcus epidermidis. FEMS Microbiol. Lett. 2012, 330, 56–65. [CrossRef]

71. Strunk, T.; Prosser, A.; Levy, O.; Philbin, V.; Simmer, K.; Doherty, D.; Charles, A.; Richmond, P.; Burgner, D.;
Currie, A. Responsiveness of human monocytes to the commensal bacterium Staphylococcus epidermidis
develops late in gestation. Pediatr. Res. 2012, 72, 10–18. [CrossRef]

72. Leijh, P.C.; van den Barselaar, M.T.; van Furth, R. Kinetics of phagocytosis and intracellular killing of
Staphylococcus aureus and Escherichia coli by human monocytes. Scand. J. Immunol. 1981, 13, 159–174.
[CrossRef] [PubMed]

73. Cruciani, M.; Etna, M.P.; Camilli, R.; Giacomini, E.; Percario, Z.A.; Severa, M.; Sandini, S.; Rizzo, F.; Brandi, V.;
Balsamo, G.; et al. Staphylococcus aureus Esx Factors Control Human Dendritic Cell Functions Conditioning
Th1/Th17 Response. Front. Cell. Infect. Microbiol. 2017, 7, 330. [CrossRef] [PubMed]

74. Nagl, M.; Kacani, L.; Mullauer, B.; Lemberger, E.M.; Stoiber, H.; Sprinzl, G.M.; Schennach, H.; Dierich, M.P.
Phagocytosis and killing of bacteria by professional phagocytes and dendritic cells. Clin. Diagn Lab. Immunol.
2002, 9, 1165–1168. [CrossRef] [PubMed]

75. Netea, M.G.; Gijzen, K.; Coolen, N.; Verschueren, I.; Figdor, C.; Van der Meer, J.W.; Torensma, R.; Kullberg, B.J.
Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages.
Microbes Infect. 2004, 6, 985–989. [CrossRef] [PubMed]

76. Van der Aar, A.M.; Picavet, D.I.; Muller, F.J.; de Boer, L.; van Capel, T.M.; Zaat, S.A.; Bos, J.D.; Janssen, H.;
George, T.C.; Kapsenberg, M.L.; et al. Langerhans cells favor skin flora tolerance through limited presentation
of bacterial antigens and induction of regulatory T cells. J. Investig. Dermatol. 2013, 133, 1240–1249. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.ppat.1001133
http://dx.doi.org/10.1111/j.1574-6968.2012.02533.x
http://dx.doi.org/10.1038/pr.2012.48
http://dx.doi.org/10.1111/j.1365-3083.1981.tb00122.x
http://www.ncbi.nlm.nih.gov/pubmed/7015485
http://dx.doi.org/10.3389/fcimb.2017.00330
http://www.ncbi.nlm.nih.gov/pubmed/28785545
http://dx.doi.org/10.1128/CDLI.9.6.1165-1168.2002
http://www.ncbi.nlm.nih.gov/pubmed/12414745
http://dx.doi.org/10.1016/j.micinf.2004.05.013
http://www.ncbi.nlm.nih.gov/pubmed/15345229
http://dx.doi.org/10.1038/jid.2012.500
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Staphylococcal Strains 
	Generation and Stimulation of DCs 
	DC Maturation Analysis 
	Internalization and Processing Assays 
	Intracellular Bacterial Survival 
	T Cell Proliferation 
	Staphylococcal Cap Locus PCR and Superantigen Multiplex PCR 
	Statistical Analysis 

	Results 
	S. aureus and S. epidermidis Induce Similar Expression of DC Maturation Markers 
	S. epidermidis Are Internalized by DCs to a Lower Extent than S. aureus 
	S. aureus and S. epidermidis Antigens Are both Efficiently Loaded on MHC-II Molecules by DCs 
	S. aureus and S. epidermidis Strains Vary in Their Capacity to Induce T Cell Proliferation 
	In Absence of SAgs, S. aureus and S. epidermidis Induce Similar Levels of T Cell Proliferation 

	Discussion 
	References

